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Abstract— Accurately positioning nodes in wireless and supporting mathematical analysis, in part because of LS-
sensor networks is important because the location of sensors pased regression has well-known statistical descriptions
is a critical input to many higher-level networking tasks.  \yhen operating near ideal conditions. By examining Linear
However, the localization infrastructure can be subjected to . .
non-cryptographic attacks, such as signal attenuation and Legst Squares (L_LS)’ We_ build the mathemanpal quel and
amplification, that cannot be addressed by traditional secu- derive the analytic solution for attack detection using the
rity services. We propose several attack detection schemes for residuals from the LLS regression. We show that attack
wireless localization systems. We first formulate a theoretical detection using LLS is easy to conduct and is suitable for
foundation for the attack detection problem using statistical both single-hop and multi-hop ranging methods because

significance testing. Next, we define test metrics for two broad it is ind dent of th . dalit d by th
localization approaches: multilateration and signal strength. 't 'S _Independent of the ranging modality used by the

We then derived both mathematical models and analytic l0calization system.

solutions for attack detection for any system that utilizes On the other hand, many signal strength based al-
those approaches. We also studied additional test statistics gorithms [3], [9] rely on either statistical inference or
that are specific to a diverse set of algorithms. Our trace- machine-learning in the context of scene matching to per-

driven experimental results provide strong evidence of the f | lizati d tv d t vield cl d
effectiveness of our attack detection schemes with high de- orm localization, and consequently do not yield closed-

tection rates and low false positive rates across both an 802.11 form solutions. However, for algorithms based on signal
(WiFi) network as well as an 802.15.4 (ZigBee) network in strength, we found that the minimum distance between
two real office buildings. Surprisingly, we found that of the  an observation and the database of signal strength vectors
several methods we describe, all provide qualitatively similar 5 5 go0d test statistic to perform attack detection. One
detection rates whlch_ |nd|cate that the d.lfferent Ioggllzatlon K dvant f h f . | st th b d
systems all contain similar attack detection capability. €y advantage of our approach Ior signal streng ase

methods is that the detection phase can be performed

. INTRODUCTION before localization.

Obtaining accurate positions of nodes in wireless and To evaluate the effectiveness of our attack detection
sensor networks is important because the location ghechanisms we first present experimental results illustrat
sensors is a critical input to many higher-level networkingng the feasibility of physical attacks on localization. We
tasks. Recent research efforts have resulted in a plethdtgen conducted a trace driven evaluation using both an
of algorithms to localize sensor nodes, a fraction of whict802.11 (WiFi) network as well as an 802.15.4 (ZigBee)
have been covered in recent surveys [1]-[3]. As moreetwork in two real office buildings. In particular, we
location-dependent services are deployed, they will inapplied signal strength attenuation and amplificatiomaisi
creasingly become tempting targets for malicious attacks linear attack model obtained from our experiments, to the
Unlike traditional systems, the localization infrasturet Received Signal Strength (RSS) readings collected from
is sensitive to non-cryptographic attacks, and these ¢annthese two office buildings. We evaluated the performance
be addressed using traditional security services. We haweé our attack detection schemes using detection rates and
found that the performance of the localization algorithmseceiver operating characteristic curves. Our experiaient
degrades significantly under physical attacks, for exampleesults provide strong evidence of the effectiveness of
when signals are attenuated, amplified, or reflected by ayur attack detection schemes with high detection rates,
adversary [4]. over 95% and low false positive rates, often under 5%.

Compromised localization results are a serious thre&urprisingly, we found that most of the attack detection
because of their impact on applications, and it is thuschemes provide qualitatively similar performance. This
desirable to detect the presence of localization attacks. khows that the different localization systems have similar
this paper, we examine the problem of detecting attaclkattack detection capabilities.
on wireless localization. We present a general formulation The rest of the paper is organized as follows. Section Il
for attack detection using statistical significance tegtindiscusses previous research in localization and attack de-
and then build tests that are applicable to broad classésction. We study the feasibility of attacks and present our
of multilateration and signal strength-based methods, axperimental methodologies in Section Ill. We present our
well as several other test statistics that are unique to generalized theoretical formulation for the attack dévect
variety of different localization algorithms. problem in Section IV. We next derive an analytic solution

Multilateration is a popular localization approach thatfor attack detection using Least Squares in Section V.
uses Least Squares (LS) techniques to perform locallsing common features for attack detection in signal
ization [2], [5]-[8], and has the desirable property ofstrength based algorithms is presented in Section VI. We



study the test statistics that are specific to a variety adensities are typical.
different algorithms in Section VII. Then, we provide Our work is unique in that we have formulated location
a discussion in Section VIII. Finally, we conclude inattack detection as a general statistical significancentpst
Section IX. problem. We showed how the test statistics come naturally
Il. RELATED WORK out of the localization algorithms themselves without addi
tional assumptions. In addition, our work differs from most
There has been much activity towards developing locabrevious research in that we experimentally validated our

ization systems for wireless and sensor networks. In thigpproaches using real networks deployed in two different
section, we first give a broad overview and then focus oRuildings.

activity related to secure localization.
Localization approaches can be categorized using vari- [ll. FEASIBILITY OF ATTACKS

ous taxonomies. Range-based algorithms involve distance|n this section we provide background on how attackers
calculation to landmarks with known positions using thecan impact the localization system. We next discuss the
measurement of various physical properties [10] like RS$easibility of conducting these attacks on signal strepgth
[3], [9], Time Of Arrival (TOA) [5] and Time Differ- and provide the experimental methodology that we use

ence Of Arrival (TDOA) [11]. Range-free algorithms to evaluate our attack detection mechanisms later in this
use coarser metrics such as connectivity [12] or hopaper.

counts [6] to place bounds on node positions. Another
classification method relates how a node is mapped to/ Localization Attacks
location. Lateration approaches [2], [5]-[8], use dis&c Localization mechanisms are built upon different rang-
to landmarks, while angulation uses the angles from landng modalities, such as RSS, TOA, AOA, and hop count.
marks. Scene matching strategies [3], [9], [13], [14] use ghese all rely on the measurement of the physical prop-
function that maps observed radio properties to locationsrties of the wireless system. Adversaries can apply non-
on a pre-constructed radio map or database. Finally, @yptographic attacks against the measurement processes,
third dimension of classification extends to aggregate dfypassing conventional security services, and as a re-
singular algorithms. Aggregate approaches [12], [15] useult can affect the localization performance. For exam-
collections of many nodes in the network in order tople, wormhole attacks tunnel through a faster channel to
localize (often by flooding), while localization of a node shorten the observed distance between two nodes [23]. An
in singular methods only requires it to communicate to attenuation attack would decrease the radio range, and thus
few landmarks. In this paper, we focus our work on twopotentially lengthen the hop-count. Compromised nodes
broad localization mechanisms: multilateration and dignanay delay response messages to disrupt distance estima-
strength. Multilateration clearly applies to both singtela tion [7]. RSS readings can be altered due to attenuation
multi-hop range-based approaches, while signal strengit amplification of the signal strength by an adversary [4].
can be applied to a wider variety of both range-based andl broad survey of the potential non-cryptographic attacks
scene matching algorithms. that are unique to localization can be found in [7].

There has been considerably less work on the problem
of ensuring the trustworthiness of wireless localizationB- Signal Srength Attacks
Cryptographic threats on localization, such as device We choose to use RSS as the ranging modality for
spoofing, can be addressed through traditional securitgcalization algorithms. An adversary can attack the senso
services, e.g. authentication. Non-cryptographic tlsreatnode directly or compromise the landmarks involved in lo-
such as physically perturbing the environment, requirealization by attenuating or amplifying the signal stréngt
different strategies. [16], [17] proposed distance bongdi readings. Based on our experimental attacks using real
protocols for verification of node positions. [18] proposedmnaterials, we will use the linear attack model [4] (i.e.
the Verifiable Multilateration mechanism which is baseda material causes a constant percentage power loss inde-
on the distance bounding protocols for secure positiopendent of distance) as shown in Figure 1 to describe the
computation and verification. [19] uses hidden and mobileffect of an attack on the RSS readings at the sensor device
base stations to localize and verify location estimate®). [2 or at the landmarks. As presented in the figure, these
uses both directional antennas and distance bounding &ttacks are easy to conduct with low cost materials. The
achieve security. Compared to all these methods, whidinear relationship implies that it is easy for an adversary
employ location verification and discard location estirateto control the effect of an attack on the observed signal
indicated as attacked, [7] and [21] try to eliminate attaclstrength by appropriately selecting different materials.
effects and still provide accurate localization. The cébse _
work to this paper is [22], which proposed a generaf>- Experimental Methodology
location anomaly detection scheme that relied on the In order to study the generality our attack detection
neighbor information to detect inconsistencies. However, approaches, we have conducted experiments in two office
assumes a highly dense network where the positions of theiildings, one is the 3rd floor of the Computer Science
nodes follow a Gaussian distribution, which is contrary tdouilding at Rutgers University (CoRE) as shown in Fig-
the structure of many deployed systems where much lowerre 2 (a) and the other is in a floor of an industrial
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Fig. 2. Layout of the experimental floor

research lab (Industrial Lab) as presented in Figure 2 We propose to formulate location attack detection as
(b). In Figure 2 (a), the experiments are performed fom statistical significance testing problem, where the null
both an 802.11 (WiFi) network as well as an 802.15.hypothesis is
(ZigBee) network. For the 802.11 (WiFi) network, there

are 4 landmarks shown in red squares deployed in a

coll!near manner to maximize signal strength coveraggy, significance testing, a test statisfitis used to evaluate
While for the 802.'15'4 (Z'nge) network, .there are 4Whether observed data belongs to the null-hypothesis or
Ianqurk; shown n ”.‘agenta circles placed in a square Sl%t. For a particular significance level, (defined as the

to maximize Ioca_hzatlon_ accuracy [2‘.1]' Fo_r ex_penment robability of rejecting the hypothesis if it is true), tker
conducted in the industrial I_ak_), as deplcte_d in Figure 2 (b s a correspondingacceptance region © such that we

we only used an 802.11 (WiFi) netwqu V.V'th 5 Ia.ndm":lrl.(s'declare the null hypothesis valid if an observed value of
The small green dots are the localization testing poin e test statistic®s ¢ 0, and reject the null hypothesis
and the small blue stars are the training points. We Wi|f Tebs ¢ O (ie. declare’ an attack is presentTiPbs ¢
present the results of our experiments for each of th!aZc where Q¢ is the critical region of the test). In our
pro posed attack detection cases in its associated Semionaltt:ack detection problem, the reginand decision rule is
this paper. Across ‘f"” experlments, we have performgd ?pecified according to the form of the detection stati$tic
trace-drlve_n evaluation by either attenuating or ampidyi (for example, when using distance in signal strength space
RSS readings collected from these two buildings. for T, the decision rule becomes comparison against a
threshold), and rejection of the null hypothesis corresigon

. . ) . to declaring the presence of an attack.
In this section we first propose a general formulation

for the localization attack detection problem. We thers. Effectiveness
introduce metrics for evaluating the effectiveness of our

Ho : normal (no attack)

IV. GENERALIZED ATTACK DETECTIONMODEL

In order to evaluate the effectiveness of our attack de-
approaches. . Sl .
tection methods, we will utilize the following performance

A. Localization Attack Detection metrics: _
In general, the error of a localization algorithm is defined fC#mUIatlve I.Dls:trlbutlor? Fun(r:]tlon (CP.F.)' T;e CDF
as the distance between the true location: [z, y]T and of the test statisticI' provides the sensitivity o ur}dgr
the estimated locatio, Dy, — |x — X]| Wevfound in attack. Based on the CDF, we can study the feasibility of
) roern ' .. using T for attack detection.
prior work that under physical attacks, the localization Detection Rate (DR): An attack may cause the sig-

error D, increases significantly [4]. However).,, is nificance test to reject{y. We are thus interested in the

not directly available during run-time, and the challenge,_.. .. A :
in attack detection is to devise strategies for detectinstatlstlcal characterization of the attack detectionnapts

o o Sver all the localization attempts. The Detection Rate is
localization attacks that do not use localization errors. . o
Signal Atienuation through Various Matcrials defined as the percentage of localization attempts that are

L Thessse ' determined to be under attack, i.e.:
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where Ny, IS the total number of localization attempts
and Ngqcr 1S the number concluded under attack by
detection. Note that when the signal is attacked, the de-
tection rate corresponds to the probability of detectign
while under normal (non-attack) conditions it corresponds
Fig. 1. Linear attack model on received signal strength faious {5 the probability of declaring a false pOSiti\léfa. We
media. . . .

will examine DR as a function of the attack strength.
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Receiving Operating Characteristic (ROC) curve:To In addition to its computational advantages, the LLS
evaluate an attack detection scheme we want to studgrmulation allows for tractable statistical analysis,vees
the false positive rate’s, and probability of detection shall now see.

P, together. The ROC curve is usually used to measur, .

the tradeoff between false-positives and correct detestio B. The Re.gduajs o .
The ROC curve is a plot of attack detection accuracy N Practice, there are estimation errors from the ranging
against the false positive rate. It can be obtained by vgryinSteP- The LLS formulation can be refined as a linear

the detection thresholds. regressionb = Ax + e, wheree corresponds to model
errors. The localization result is thén= (A" A)~*A”b,
V. USING LEAST SQUARES and the fitted valued corresponding to the observed

In this section we provide mathematical analysis foraluésb are given by
attack detection in multilateration algorithms. We first b = Ax = A[(ATA)"'A”b] = A(ATA)"'A”b. (6)
provide background in using LS to perform localization. . C
Next, based on the properties of the LLS estimator, wE urther, we define the vector of residuglas
define an attack detection scheme that utilizes regression é=b-—b=[1-AATA)'AT]b. (7)

residuals, and give an analytic formulation to specify th?Nhen the rearession model is performina well we ma
acceptance regiof. Finally, the experimental results are g P g Y

presented to evaluate the effectiveness of the detecti@?sum.e that the _model errors are Gaussian [25], [26]. l_Jn-
scheme. er this assumption, the residuals also follow a Gaussian

distribution, N(u, X)), since the residuals are a linear
A. Localization combination of the elements & ande. Here, i is the
mean vector an® is the covariance matrix. We choose

. To perform I(_)callzatlon with LS requires 2 steps: rang-the residualse as the test statistid’, and will build our
ing and lateration.

Ranging Step: Recent research has seen a host 0?ntack detection scheme by using the statistical propertie

variants on the ranging step such as RSS, TOA, TDOAOf é when LLS is operating in a desirable performance

and hop count. Our attack detection approach works witﬁeg'me'
any ranging modality. C. The Detection Scheme

Lateration Step: From the estimated distancés and  The LLS attack detection is performed after localization.
known positions {;, y;) of the landmarks, the position( The residuals are correlated Gaussian random variables
y) of the localizing node can be found by finditg, j)  and the multivariate Gaussian distribution ®fcan be
satisfying: expressed as:

- &) — ;e—%(é—u)TE”(é—u). (8)

(&,9) = argmin >_[v/(w: = )7 + (0~ 9)° = I* (2 &= e

i=1

wheren is the total number of landmarks. We call solvin In order to determine whether the location result is com-
" ' gpromised by adversaries, we perform attack detection

g]el 'abo;/r? ;:\Irﬁglean;nlmear Least $qu§\fre$, tor NLIS' it through significance testing. We can define an acceptance
olving the problem requires significant complexi yregion iné space by

and is difficult to analyze. We may approximate the NLS
solution and linearize the problem [24] into the system Q={e: Pr({T: (T - w)"Z"HT - p) >

Ax = b, where: e @
x ) e—-w'="e—w}) >a}
N AR DEEINTES ;lzl Yi o In practice, after performing localization using LLS, we
_ 1 :Zn 1 :z" have an observed value of residuat®s. Testing the null
Tn — o i=1 Ti Yn — 5 i=1Yi

hypothesis, we can decide that the localization is under

and attack if the probability? =1 — M < «, where

@ - Z_’éég_?); (7 —dé%)ziz;l vi) M= 1 / / e TS e g e

1 n Zai=1 % n 1 <. UEpn
1 | “ om)"[=t S
T2 : ' 9

(@ == _%lﬁ?)f (v —djm) ) and E is the integration region defined by

moom e (& —pw)TE"1(& - u) < X? with
Note thatA is described by the coordinates of landmarks X2 = (8°P% — ;)T 1(e%s — p).

only, while b is represented by the distances to the

landmarks together with the coordinates of landmarks. W¥/e can express the term

call the above formulation of the problefrinear Least @-w'ste-—p = (e—pw™DTDE-p)
Squares, or LLS. The estimate ok = [z, ] is done via — (D& - p)"(D(@— p))
x = (ATA)'ATb (5) = yTy. (10)
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respectively. While for signal strength attacks greatentha
15dB, which can cause the ranging errors larger than 90
feet, the detection rate is more than 90%. These results
strongly indicate that using residuals in LS as a test
statistic for attack detection is effective.
Further, the ROC curves in Figure 3 (b) show that for
false positive rates less than 10%, the detection rates are
Foagr C 7 e Y™ ahove 90% and close to 99% when the attack strength
(a) LOA: @ = 0.01 (b) LOA: o = 0.05 increases to 20dB and 25dB. This shows that if the ad-
Fig. 4. CoRE 802.11, LLS residuals: effectiveness of atdetection  versary wants to cause higher degree of localization error,
it is almost certain that our attack detection mechanism
will detect it. For small attacks of less than 5dB, the
/ / 5 gy, dy, (11) detection rates are about 40%. In this case, it is difficult
\V27) / to distinguish whether the anomaly in the test statistic is
caused by attacks or by measurement errors since the RSS
readings can fluctuate around 5dB due to environmental
effects. However, for such small attacks, because the
resulting impact on the final localization result would be

Substltutmgy D(é& — p) into Equation (9), we get

with E’ defined byyTy < X2. Based on the calculation
of the integral (see the Appendix), we get

T'(n/2, X2/2)

M= I'(n/2) (12) small, the consequences of failing to detect such attacks
where I" is the incomplete gamma function. We thenWOUId likely be small as well.
further obtain the probability by? = 1— M. Based on the VI. DISTANCE IN SIGNAL SPACE

definition in Section IV, if the probability is sufficiently RSS is a common physical property used by a widely
low, i.e. P < a, then&°™ belongs to the critical region diverse set of algorithms. For example, most scene match-
Q¢ and we can conclude that the location result is undehg approaches utilize the RSS, e.g. [1], [9], and many
attack. multilateration approaches [27] use it as well. In spite of
D. Experimental Evaluation its several meter-level accuracy, using the RSS is an attrac
tive approach because it can re-use the existing wireless
In this section we present the evaluation of the effeCi,¢aqirycture — this feature presents a tremendous cost
tiveness of the attack detection scheme. We chose Rsséﬁ/mgs over deploying localization-specific hardware. In
the ranging modality and performed signal strength attacksis section, we thus derive an attack detection scheme

gccct)rdmﬁl to the experimental methodologies described iy yicaple to any signal strength based localization syste
ection

The average ranging error as a function of the severitﬁ- Overview
of signal strength attacks is shown in Figure 3 (a). We All of the above algorithms take a vecterof n RSS
know that the relationship between the RSS error and theadings to (or from)n landmarks for the node to be
ranging error is multiplicative with distance [24]. Evenlocalized. Note thats corresponds to a point in a-
small random perturbation in RSS readings can caus#mensional signal space [4]. Under normal conditions,
large ranging errors due to this multiplicative factor. Wethe RSS vectors obtained from the physical positions in a
observed this effect in Figure 3 (a); the ranging errofloor form a surfaceS in the n-dimensional signal space;
increased faster as to the severity of the attacks. Figurewle can think of this surface as comprising ‘valid’ points in
presents DR vs. the ranging errors when tested againsignal space. Due to measurement noise, multipath effects,
significance leveh = 0.01 and o = 0.05. We found that and unknown biases, will fluctuate around this idealized
under the normal situation where the ranging errors af@SS surface.
less than 15 feet, the probability of false alaif, is A localization attacker would perturb the correcto
less than 1.5% and 2.5% far = 0.01 and « = 0.05 produce a corrupted n-dimensional RSS veston signal
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Fig. 6. Minimum distance in signal spad®s: attack detection across different networks and buildings

space,s’ will be moved away from the ideal surface corresponding ROC curves under signal attenuation attacks
constructed by the correct RSS vectors. The stronger ther the 802.11 network in CoRE. We found that, in general,
attack, the more likely the vectef will be distant from the the effectiveness of the attack detection scheme is similar
RSS surface. We thus choose the minimum distance to tlaeross the different networks and buildings. Interesgingl
surfaceS, i.e. Dy = min{||s'—s?|| : wheres? € S}, asthe we found that the performance of the attack detection
test statistic for signal strength based attack detecliba. scheme under signal amplification attacks is uniformly
key advantage of this approach is that the attack detectidretter than those for signal attenuation attacks, although
is independent of the localization algorithms and can bthe shapes of the DR curves are similar. Because of the
performed before the localization process. higher detection rates under amplification attacks, we do
Although it is possible to devise a statistical model fomot present additional amplification results in the remain-
D, based on models for normal measurement errors, ider of the paper. All these results are highly encouraging
this section we shall take a different approach and applyecause they show our methods are quite general and do
empirical methodologies from training data to determinenot depend on a specific network or environment.
thresholds for defining the critical region. Further, we observed that the DR under the 802.15.4
o network in CoRE outperformed the DR under the 802.11
B. Finding Thresholds networks in both CoRE and Industrial Lab for the signal
Choosing an appropriate threshotd will allow the attenuation attacks as well as the signal amplification
detection scheme to be robust to false detections. In ordattacks. For attack strengths of 15dB or larger, the DR in
to obtain the thresholds, we don’t need to know thahe 802.15.4 network is over 95% and equals 100% when
exact RSS surface in the signal space (in practice, it iattack severity reaches 20dB and larger. We believe that
hard to determine and exhibits discontinuities due to walihe better landmark placement for localization [24] of the
boundaries). Instead, we can obtain the thresholds throu@®2.15.4 network can account for its higher detection rates
empirical training. During the offline phase, we can collectlthough further investigation of this effect is required.
the RSS vectors for a set of known positions over the floor
and construct a radio map. During the localization phase, VII. OTHER TEST STATISTICS
we get an observed vects?®s, and we can then determine  In this section, we examine algorithm-specific test sta-
whether thes°Ps is being attacked by calculating the, tistics, which use properties specific to a particular local

using the pre-constructed radio map. ization algorithm. We have chosen a representative set of
We define that if diverse algorithms. For the multilateration category, we
Dg >, (13) investigate the NLS algorithm, while for signal strength

) _ based algorithms, we study both Area Based Probability
the signal strength readings are under attack. We use tk‘RBP) and Bayesian Networks (BN) algorithms. Detailed

distribution of the training data to help decide on thedescriptions of these can be found in [3], [24], [27].
thresholds. Figure 5 (a) shows the CDF of fhgin signal

space. We found that the curve BX; shifted to the right A. Nonlinear Least Squares (NLS)
under signal strength attacks, especially for larger B#ac  ag presented in Section V, NLS is a multilateration
thereby suggesting that we can uBg as a test Stalistic ggorithm that tries to satisfy the condition shown in

for detecting attacks, and also that we can use the NOBquation (2). The estimated, §) is the solution that
attacked CDF to obtaim for a givena value. minimizes the Sum of Squared Erraf3:

C. Experimental Evaluation n

2 . P - 2
We next present the evaluation of the effectiveness of £ = ;[\/(li — &)+ (vi —9)* — il (14)
using minimum distancé, for attack detection. Figure 6 =
presents the Detection Rate under different threshold (TH)/e define a test statisti€ = v/£2 because€ will likely
levels as a function of signal strength attacks for botlncrease under the attack. The CDF &fpresented in
the 802.11 and the 802.15.4 networks in CoRE and theigure 7 (a) confirms that thé grows rapidly with the
802.11 network in the Industrial Lab. Figure 5 (b) is theattack severity. Figure 7 (b) and Figure 8 show that the
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performance of attack detection when usifigfor the others in detecting larger attacks, but on the other hand
802.11 network in CoRE is comparable to that usingesulted in slightly higher false positive rates around 7%.
residuals in Section V. The thresholds are also obtained

from training. C. Bayesian Networks (BN)

B. Area Based Probability (ABP) Another representative approach in signal strength

Turning to signal strength based algorithms, ABP is arké)zsed algorithms is the Bayesian Networks (BN) scheme.

area-based algorithm that uses Bayes’ Rule to return anre)::ﬁztlirr]\eNePc,)vt?;ﬁIituSi?stigﬁﬁzlsnofsiﬁgsﬂzilnIc?v]:/?]renocsei-to
area which has the highest likelihood of capturing the tru§ ns. BN P M zt Carl mpling techni pGibb
location. ABP divides the floor into a set of tiles. The ons. uses a Monte-Carlo sampling technique ( s

total likelihood that the wireless node resides at each til?amplmg) 0 comput_e_the full Jo!nt-probablhty distritoor
. L or not just the position coordinates, but also for every
is calculated using:

n random variable in the Bayesian Network. Without an
r=][~ (15)  attack, the contribution from each landmark to the full
i=1 joint-probability distribution is almost uniform. Undena
where n is the total number of landmarks amyl is attack, we found that the contribution from each landmark
the likelihood of observing the measured RSS readingan become significantly reduced as the attack severity
at landmark: which is usually modeled as a Gaussianincreases. Thus, we can use the fraction of contribution to
random variable. The total likelihood is calculated at eackhe joint probability as a test statistic in BN.
tile, and the returned location estimation is either a negio Another method we explored is to use the probability
whose likelihood is above a certain level, or is the tile withlikelihood because the conditional probability distribat
the maximum likelihood. of the coordinates in BN relies on the prior and the
When under attack, the corrupted RSS readings redutikelihood. We observed that under an attack, the value
the set of likely positions on the floor to localize aof the likelihood became significantly smaller. During the
node. We found that the highest tile-likelihood denotedsampling process, the calculation of the likelihood uses th
aslikelihood,, ., decreases significantly under attack, asame approach as in Equation (15). Because the absolute
well as the sum of the likelihoods over all the tiles,value of the likelihood is very small, we take the negative
likelihoodgy,,. We explored bothlikelihoods,,, and log of the likelihood and use it as a test statistic for attack
likelihood,, ., as test statistics. The thresholds are learnedetection in BN.
from the training data by taking the negative log of Figure 11 shows the effectiveness of using the fraction
the values of the highest likelihood and the sum of thef contribution and the likelihood for attack detection in
likelihoods. BN. The detection rates are over 90% for attack strength
The effectiveness of using likelihoods,,, and of 20dB or larger. The false positive rates are about 10%.
likelihood,, 4, for attack detection in ABP are presented inComparing the absolute performance of these two methods
Figure 9 and Figure 10. We found that usilikelihood,,,, ~ with the other schemes we proposed in this paper, the
under threshold equal to 2 had better performance thagerformance of these two methods is qualitatively worse.



0 5 0 2%

10 15 2 10 15
Signal attenuation (B) Signal attenuation (dB)

@ (b)
Fig. 11. CoRE 802.11, BN: (a) Using fraction of contributioheach
landmark for attack detection with threshold = 0.15. (b) \gdikelihood
in Bayesian inference for attack detection with threshold.25.

30 0 5 20 2% 30

[ A LLS:a=o0.01
~¥= LLS:a=0.1
—®— NLS: TH = 60ft
—®= Minimum distance Ds: TH = 8dB
—+— BN likelihood: TH = 0.25
-~ BN fraction: TH =0.15
ABP likelihood sum: TH = 2
ABP likelihood max: TH = 4.5

25

Detection rate, DR

30

5

10 15 20
Signal attenuation (dB)

Fig. 12. CoRE 802.11: Comparison between generic and spéesic
statistics for attack detection.

VIIl. DISCUSSION

Comparing all of our detection schemes, Figure 1

shows the DR as a function of the signal attenuatio

attacks for the 802.11 network in the CoRE building

schemes provided qualitatively similar detection rates;
although utilizing the residuals in LLS and the sum of
likelihoods in ABP slightly outperformed the others, while

using the fraction of contribution and the likelihood in BN
underperformed the others.
Based on these similar performance characteristics, it

advantageous to use the minimum distance in the sign F

spaceD, for signal strength based algorithms. Since th

attack detection can be performed prior to the localizatio
process and thus results in localization computation co

savings under attack. Additionally, the attack detectio
performance under the 802.15.4 network when uding

outperforms the 802.11 network with 100% detection rat

for large attacks as shown in Figure 6.
Moving to examine the relationship between attac

detection and localization error, Figure 13 shows the Dlg
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ranging error, and localization error.

when using residuals in LLS for attack detection, and the
localization errors under the corresponding signal atack
with different localization algorithms. The figure shows
that detection rates are more than 90% for attack strength
equal to or greater than 15dB, and at this attack strength
the average localization error is about 35ft.

The above result is quite encouraging, as it shows that
an attacker cannot cause gross localization errors without
there being a very high probability of detection (>95%).
In the case of RSS, with mean errors of 10-15 ft [3], an
attacker can not cause errors of about 2-3 times over the
average error without a very high probability of detection.
Even for detection rates as low as 50%, the attacker’s
position error is limited to about 20 ft.

IX. CONCLUSION

In this work, we analyzed the problem of detecting
non-cryptographic attacks on wireless localization. We
proposed a theoretical foundation by formulating attack
detection as a statistical significance testing problem. We
then concentrated on test statistics for two broad local-
ization approaches: multilateration and signal strength.
For multilateration that uses Linear Least Squares, we
derived a closed-form representation for the attack detec-
tor. Further, for localization schemes that employ signal
strength, we showed that by utilizing the signal strength

z?\S a common feature, the minimum Euclidean distance
in the signal space can be used as a test statistic for

attack detection independent of the localization process.

Surprisingly, we found that the performance of all theFurther, we derived additional test statistics for a seact

of representative localization algorithms.

We studied the effectiveness and generality of our attack
detection schemes using a trace-driven evaluation involv-
ing both an 802.11 (WiFi) network and an 802.15.4 (Zig-
Bee) network in two real office buildings. We evaluated the

erformance of our attack detection schemes in terms of
tection rates and receiver operating characteristiesur

ur experimental results provide strong evidence of the

ffectiveness of our attack detection schemes with high
tection rates, over 95% and low false positive ratesnofte

elow 5%. Also, our approach is generic across a diverse
set of algorithms, networks, and buildings. Interestingly

we found that the performance of the different attack

detection schemes are more similar than different. This re-

I§ult shows that different localization systems have simila

ttack detection capabilities, and consequently thatayst
esigners can focus on using algorithms that provide the
highest localization accuracy rather than having to tréfdeo
position accuracy against attack detection abilities.

APPENDIX
COMPUTING THE PROBABILITY MASS M

We have simplified the probability magd of a multi-

variate Gaussian distribution as

1
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with £’ defined byyTy < X2. Changing to polar

coordinates, we get
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whereT is the incomplete gamma function. Since

i1 T()
31—5(5»5)—@X\/7? (19)
Through further simplification, we can get
n—1 1
Bi=(m)" 2 X ——. (20)
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Hence, substituting Equations (18) and (20) into (17), we

obtain the probability mass

I'(n/2,X?/2)
I'(n/2)
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