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Abstract— Accurately positioning nodes in wireless and
sensor networks is important because the location of sensors
is a critical input to many higher-level networking tasks.
However, the localization infrastructure can be subjected to
non-cryptographic attacks, such as signal attenuation and
amplification, that cannot be addressed by traditional secu-
rity services. We propose several attack detection schemes for
wireless localization systems. We first formulate a theoretical
foundation for the attack detection problem using statistical
significance testing. Next, we define test metrics for two broad
localization approaches: multilateration and signal strength.
We then derived both mathematical models and analytic
solutions for attack detection for any system that utilizes
those approaches. We also studied additional test statistics
that are specific to a diverse set of algorithms. Our trace-
driven experimental results provide strong evidence of the
effectiveness of our attack detection schemes with high de-
tection rates and low false positive rates across both an 802.11
(WiFi) network as well as an 802.15.4 (ZigBee) network in
two real office buildings. Surprisingly, we found that of the
several methods we describe, all provide qualitatively similar
detection rates which indicate that the different localization
systems all contain similar attack detection capability.

I. I NTRODUCTION

Obtaining accurate positions of nodes in wireless and
sensor networks is important because the location of
sensors is a critical input to many higher-level networking
tasks. Recent research efforts have resulted in a plethora
of algorithms to localize sensor nodes, a fraction of which
have been covered in recent surveys [1]–[3]. As more
location-dependent services are deployed, they will in-
creasingly become tempting targets for malicious attacks.
Unlike traditional systems, the localization infrastructure
is sensitive to non-cryptographic attacks, and these cannot
be addressed using traditional security services. We have
found that the performance of the localization algorithms
degrades significantly under physical attacks, for example,
when signals are attenuated, amplified, or reflected by an
adversary [4].

Compromised localization results are a serious threat
because of their impact on applications, and it is thus
desirable to detect the presence of localization attacks. In
this paper, we examine the problem of detecting attacks
on wireless localization. We present a general formulation
for attack detection using statistical significance testing
and then build tests that are applicable to broad classes
of multilateration and signal strength-based methods, as
well as several other test statistics that are unique to a
variety of different localization algorithms.

Multilateration is a popular localization approach that
uses Least Squares (LS) techniques to perform local-
ization [2], [5]–[8], and has the desirable property of

supporting mathematical analysis, in part because of LS-
based regression has well-known statistical descriptions
when operating near ideal conditions. By examining Linear
Least Squares (LLS), we build the mathematical model and
derive the analytic solution for attack detection using the
residuals from the LLS regression. We show that attack
detection using LLS is easy to conduct and is suitable for
both single-hop and multi-hop ranging methods because
it is independent of the ranging modality used by the
localization system.

On the other hand, many signal strength based al-
gorithms [3], [9] rely on either statistical inference or
machine-learning in the context of scene matching to per-
form localization, and consequently do not yield closed-
form solutions. However, for algorithms based on signal
strength, we found that the minimum distance between
an observation and the database of signal strength vectors
is a good test statistic to perform attack detection. One
key advantage of our approach for signal strength based
methods is that the detection phase can be performed
before localization.

To evaluate the effectiveness of our attack detection
mechanisms we first present experimental results illustrat-
ing the feasibility of physical attacks on localization. We
then conducted a trace driven evaluation using both an
802.11 (WiFi) network as well as an 802.15.4 (ZigBee)
network in two real office buildings. In particular, we
applied signal strength attenuation and amplification, using
a linear attack model obtained from our experiments, to the
Received Signal Strength (RSS) readings collected from
these two office buildings. We evaluated the performance
of our attack detection schemes using detection rates and
receiver operating characteristic curves. Our experimental
results provide strong evidence of the effectiveness of
our attack detection schemes with high detection rates,
over 95% and low false positive rates, often under 5%.
Surprisingly, we found that most of the attack detection
schemes provide qualitatively similar performance. This
shows that the different localization systems have similar
attack detection capabilities.

The rest of the paper is organized as follows. Section II
discusses previous research in localization and attack de-
tection. We study the feasibility of attacks and present our
experimental methodologies in Section III. We present our
generalized theoretical formulation for the attack detection
problem in Section IV. We next derive an analytic solution
for attack detection using Least Squares in Section V.
Using common features for attack detection in signal
strength based algorithms is presented in Section VI. We



study the test statistics that are specific to a variety of
different algorithms in Section VII. Then, we provide
a discussion in Section VIII. Finally, we conclude in
Section IX.

II. RELATED WORK

There has been much activity towards developing local-
ization systems for wireless and sensor networks. In this
section, we first give a broad overview and then focus on
activity related to secure localization.

Localization approaches can be categorized using vari-
ous taxonomies. Range-based algorithms involve distance
calculation to landmarks with known positions using the
measurement of various physical properties [10] like RSS
[3], [9], Time Of Arrival (TOA) [5] and Time Differ-
ence Of Arrival (TDOA) [11]. Range-free algorithms
use coarser metrics such as connectivity [12] or hop
counts [6] to place bounds on node positions. Another
classification method relates how a node is mapped to a
location. Lateration approaches [2], [5]–[8], use distances
to landmarks, while angulation uses the angles from land-
marks. Scene matching strategies [3], [9], [13], [14] use a
function that maps observed radio properties to locations
on a pre-constructed radio map or database. Finally, a
third dimension of classification extends to aggregate or
singular algorithms. Aggregate approaches [12], [15] use
collections of many nodes in the network in order to
localize (often by flooding), while localization of a node
in singular methods only requires it to communicate to a
few landmarks. In this paper, we focus our work on two
broad localization mechanisms: multilateration and signal
strength. Multilateration clearly applies to both single and
multi-hop range-based approaches, while signal strength
can be applied to a wider variety of both range-based and
scene matching algorithms.

There has been considerably less work on the problem
of ensuring the trustworthiness of wireless localization.
Cryptographic threats on localization, such as device
spoofing, can be addressed through traditional security
services, e.g. authentication. Non-cryptographic threats,
such as physically perturbing the environment, require
different strategies. [16], [17] proposed distance bounding
protocols for verification of node positions. [18] proposed
the Verifiable Multilateration mechanism which is based
on the distance bounding protocols for secure position
computation and verification. [19] uses hidden and mobile
base stations to localize and verify location estimates. [20]
uses both directional antennas and distance bounding to
achieve security. Compared to all these methods, which
employ location verification and discard location estimates
indicated as attacked, [7] and [21] try to eliminate attack
effects and still provide accurate localization. The closest
work to this paper is [22], which proposed a general
location anomaly detection scheme that relied on the
neighbor information to detect inconsistencies. However,it
assumes a highly dense network where the positions of the
nodes follow a Gaussian distribution, which is contrary to
the structure of many deployed systems where much lower

densities are typical.
Our work is unique in that we have formulated location

attack detection as a general statistical significance testing
problem. We showed how the test statistics come naturally
out of the localization algorithms themselves without addi-
tional assumptions. In addition, our work differs from most
previous research in that we experimentally validated our
approaches using real networks deployed in two different
buildings.

III. F EASIBILITY OF ATTACKS

In this section we provide background on how attackers
can impact the localization system. We next discuss the
feasibility of conducting these attacks on signal strength,
and provide the experimental methodology that we use
to evaluate our attack detection mechanisms later in this
paper.

A. Localization Attacks

Localization mechanisms are built upon different rang-
ing modalities, such as RSS, TOA, AOA, and hop count.
These all rely on the measurement of the physical prop-
erties of the wireless system. Adversaries can apply non-
cryptographic attacks against the measurement processes,
bypassing conventional security services, and as a re-
sult can affect the localization performance. For exam-
ple, wormhole attacks tunnel through a faster channel to
shorten the observed distance between two nodes [23]. An
attenuation attack would decrease the radio range, and thus
potentially lengthen the hop-count. Compromised nodes
may delay response messages to disrupt distance estima-
tion [7]. RSS readings can be altered due to attenuation
or amplification of the signal strength by an adversary [4].
A broad survey of the potential non-cryptographic attacks
that are unique to localization can be found in [7].

B. Signal Strength Attacks

We choose to use RSS as the ranging modality for
localization algorithms. An adversary can attack the sensor
node directly or compromise the landmarks involved in lo-
calization by attenuating or amplifying the signal strength
readings. Based on our experimental attacks using real
materials, we will use the linear attack model [4] (i.e.
a material causes a constant percentage power loss inde-
pendent of distance) as shown in Figure 1 to describe the
effect of an attack on the RSS readings at the sensor device
or at the landmarks. As presented in the figure, these
attacks are easy to conduct with low cost materials. The
linear relationship implies that it is easy for an adversary
to control the effect of an attack on the observed signal
strength by appropriately selecting different materials.

C. Experimental Methodology

In order to study the generality our attack detection
approaches, we have conducted experiments in two office
buildings, one is the 3rd floor of the Computer Science
building at Rutgers University (CoRE) as shown in Fig-
ure 2 (a) and the other is in a floor of an industrial
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Fig. 2. Layout of the experimental floor

research lab (Industrial Lab) as presented in Figure 2
(b). In Figure 2 (a), the experiments are performed for
both an 802.11 (WiFi) network as well as an 802.15.4
(ZigBee) network. For the 802.11 (WiFi) network, there
are 4 landmarks shown in red squares deployed in a
collinear manner to maximize signal strength coverage.
While for the 802.15.4 (ZigBee) network, there are 4
landmarks shown in magenta circles placed in a square set
to maximize localization accuracy [24]. For experiments
conducted in the industrial lab, as depicted in Figure 2 (b),
we only used an 802.11 (WiFi) network with 5 landmarks.
The small green dots are the localization testing points
and the small blue stars are the training points. We will
present the results of our experiments for each of the
proposed attack detection cases in its associated section in
this paper. Across all experiments, we have performed a
trace-driven evaluation by either attenuating or amplifying
RSS readings collected from these two buildings.

IV. GENERALIZED ATTACK DETECTION MODEL

In this section we first propose a general formulation
for the localization attack detection problem. We then
introduce metrics for evaluating the effectiveness of our
approaches.

A. Localization Attack Detection

In general, the error of a localization algorithm is defined
as the distance between the true locationx = [x, y]T and
the estimated location̂x, Derr = ‖x − x̂‖. We found in
prior work that under physical attacks, the localization
error Derr increases significantly [4]. However,Derr is
not directly available during run-time, and the challenge
in attack detection is to devise strategies for detecting
localization attacks that do not use localization errors.
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Fig. 1. Linear attack model on received signal strength for various
media.

We propose to formulate location attack detection as
a statistical significance testing problem, where the null
hypothesis is

H0 : normal (no attack).

In significance testing, a test statisticT is used to evaluate
whether observed data belongs to the null-hypothesis or
not. For a particular significance level,α (defined as the
probability of rejecting the hypothesis if it is true), there
is a correspondingacceptance region Ω such that we
declare the null hypothesis valid if an observed value of
the test statisticTobs ∈ Ω, and reject the null hypothesis
if Tobs 6∈ Ω (i.e. declare an attack is present ifTobs ∈
Ωc, where Ωc is the critical region of the test). In our
attack detection problem, the regionΩ and decision rule is
specified according to the form of the detection statisticT

(for example, when using distance in signal strength space
for T, the decision rule becomes comparison against a
threshold), and rejection of the null hypothesis corresponds
to declaring the presence of an attack.

B. Effectiveness

In order to evaluate the effectiveness of our attack de-
tection methods, we will utilize the following performance
metrics:

Cumulative Distribution Function (CDF): The CDF
of the test statisticT provides the sensitivity ofT under
attack. Based on the CDF, we can study the feasibility of
usingT for attack detection.

Detection Rate (DR): An attack may cause the sig-
nificance test to rejectH0. We are thus interested in the
statistical characterization of the attack detection attempts
over all the localization attempts. The Detection Rate is
defined as the percentage of localization attempts that are
determined to be under attack, i.e.:

DR =
Nattack

Ntotal

(1)

whereNtotal is the total number of localization attempts
and Nattack is the number concluded under attack by
detection. Note that when the signal is attacked, the de-
tection rate corresponds to the probability of detectionPd,
while under normal (non-attack) conditions it corresponds
to the probability of declaring a false positivePfa. We
will examine DR as a function of the attack strength.
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Receiving Operating Characteristic (ROC) curve:To
evaluate an attack detection scheme we want to study
the false positive ratePfa and probability of detection
Pd together. The ROC curve is usually used to measure
the tradeoff between false-positives and correct detections.
The ROC curve is a plot of attack detection accuracy
against the false positive rate. It can be obtained by varying
the detection thresholds.

V. USING LEAST SQUARES

In this section we provide mathematical analysis for
attack detection in multilateration algorithms. We first
provide background in using LS to perform localization.
Next, based on the properties of the LLS estimator, we
define an attack detection scheme that utilizes regression
residuals, and give an analytic formulation to specify the
acceptance regionΩ. Finally, the experimental results are
presented to evaluate the effectiveness of the detection
scheme.

A. Localization

To perform localization with LS requires 2 steps: rang-
ing and lateration.

Ranging Step: Recent research has seen a host of
variants on the ranging step such as RSS, TOA, TDOA,
and hop count. Our attack detection approach works with
any ranging modality.

Lateration Step: From the estimated distancesdi and
known positions (xi, yi) of the landmarks, the position (x,
y) of the localizing node can be found by finding(x̂, ŷ)
satisfying:

(x̂, ŷ) = arg min
x,y

n
∑

i=1

[
√

(xi − x)2 + (yi − y)2−di]
2 (2)

wheren is the total number of landmarks. We call solving
the above problemNonlinear Least Squares, or NLS.
Solving the NLS problem requires significant complexity
and is difficult to analyze. We may approximate the NLS
solution and linearize the problem [24] into the system
Ax = b, where:
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Note thatA is described by the coordinates of landmarks
only, while b is represented by the distances to the
landmarks together with the coordinates of landmarks. We
call the above formulation of the problemLinear Least
Squares, or LLS. The estimate ofx = [x, y]T is done via

x = (AT A)−1AT b (5)

In addition to its computational advantages, the LLS
formulation allows for tractable statistical analysis, aswe
shall now see.

B. The Residuals

In practice, there are estimation errors from the ranging
step. The LLS formulation can be refined as a linear
regression,b = Ax + e, wheree corresponds to model
errors. The localization result is then̂x = (AT A)−1AT b,
and the fitted valueŝb corresponding to the observed
valuesb are given by

b̂ = Ax̂ = A[(AT A)−1AT b] = A(AT A)−1AT b. (6)

Further, we define the vector of residualsê as

ê = b − b̂ = [1 − A(AT A)−1AT ]b. (7)

When the regression model is performing well we may
assume that the model errors are Gaussian [25], [26]. Un-
der this assumption, the residuals also follow a Gaussian
distribution, N(µ,Σ), since the residuals are a linear
combination of the elements ofb and e. Here,µ is the
mean vector andΣ is the covariance matrix. We choose
the residualŝe as the test statisticT, and will build our
attack detection scheme by using the statistical properties
of ê when LLS is operating in a desirable performance
regime.

C. The Detection Scheme

The LLS attack detection is performed after localization.
The residuals are correlated Gaussian random variables
and the multivariate Gaussian distribution ofê can be
expressed as:

f(ê) =
1

(
√

2π)
n|Σ|

1

2

e−
1

2
(ê−µ)TΣ−1(ê−µ). (8)

In order to determine whether the location result is com-
promised by adversaries, we perform attack detection
through significance testing. We can define an acceptance
region in ê space by

Ω = {ê : Pr({T : (T − µ)T Σ−1(T − µ) >

(ê − µ)T Σ−1(ê − µ)}) > α}.
In practice, after performing localization using LLS, we

have an observed value of residualsêobs. Testing the null
hypothesis, we can decide that the localization is under
attack if the probabilityP = 1 − M < α, where

M =
1

(
√

2π)
n|Σ| 12

∫

...

∫

E

e−
1

2
(ê−µ)TΣ−1(ê−µ)dê1...dên

(9)
and E is the integration region defined by
(ê − µ)TΣ−1(ê − µ) ≤ X2 with

X2 = (êobs − µ)TΣ−1(êobs − µ).

We can express the term

(ê − µ)TΣ−1(ê − µ) = (ê − µ)TDTD(ê − µ)

= (D(ê − µ))T(D(ê − µ))

= yTy. (10)
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Fig. 3. CoRE 802.11: (a) Ranging errors under the signal strength attacks
(b) LLS residuals: Receiver Operating Characteristic (ROC) curves
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Fig. 4. CoRE 802.11, LLS residuals: effectiveness of attackdetection

Substitutingy = D(ê − µ) into Equation (9), we get

M =
1

(
√

2π)
n

∫

...

∫

E′

e−
1

2
yTydy1...dyn (11)

with E′ defined byyTy ≤ X2. Based on the calculation
of the integral (see the Appendix), we get

M =
Γ(n/2,X2/2)

Γ(n/2)
(12)

where Γ is the incomplete gamma function. We then
further obtain the probability byP = 1−M . Based on the
definition in Section IV, if the probability is sufficiently
low, i.e. P < α, then êobs belongs to the critical region
Ωc and we can conclude that the location result is under
attack.

D. Experimental Evaluation

In this section we present the evaluation of the effec-
tiveness of the attack detection scheme. We chose RSS as
the ranging modality and performed signal strength attacks
according to the experimental methodologies described in
Section III.

The average ranging error as a function of the severity
of signal strength attacks is shown in Figure 3 (a). We
know that the relationship between the RSS error and the
ranging error is multiplicative with distance [24]. Even
small random perturbation in RSS readings can cause
large ranging errors due to this multiplicative factor. We
observed this effect in Figure 3 (a); the ranging error
increased faster as to the severity of the attacks. Figure 4
presents DR vs. the ranging errors when tested against
significance levelα = 0.01 andα = 0.05. We found that
under the normal situation where the ranging errors are
less than 15 feet, the probability of false alarmPfa is
less than 1.5% and 2.5% forα = 0.01 and α = 0.05
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Fig. 5. CoRE 802.11: (a) Cumulative Distribution Function (CDF)
of minimum distanceDs in signal space. (b) Minimum distanceDs:
Receiver Operating Characteristic (ROC) curves

respectively. While for signal strength attacks greater than
15dB, which can cause the ranging errors larger than 90
feet, the detection rate is more than 90%. These results
strongly indicate that using residuals in LS as a test
statistic for attack detection is effective.

Further, the ROC curves in Figure 3 (b) show that for
false positive rates less than 10%, the detection rates are
above 90% and close to 99% when the attack strength
increases to 20dB and 25dB. This shows that if the ad-
versary wants to cause higher degree of localization error,
it is almost certain that our attack detection mechanism
will detect it. For small attacks of less than 5dB, the
detection rates are about 40%. In this case, it is difficult
to distinguish whether the anomaly in the test statistic is
caused by attacks or by measurement errors since the RSS
readings can fluctuate around 5dB due to environmental
effects. However, for such small attacks, because the
resulting impact on the final localization result would be
small, the consequences of failing to detect such attacks
would likely be small as well.

VI. D ISTANCE IN SIGNAL SPACE

RSS is a common physical property used by a widely
diverse set of algorithms. For example, most scene match-
ing approaches utilize the RSS, e.g. [1], [9], and many
multilateration approaches [27] use it as well. In spite of
its several meter-level accuracy, using the RSS is an attrac-
tive approach because it can re-use the existing wireless
infrastructure — this feature presents a tremendous cost
savings over deploying localization-specific hardware. In
this section, we thus derive an attack detection scheme
applicable to any signal strength based localization system.

A. Overview

All of the above algorithms take a vectors of n RSS
readings to (or from)n landmarks for the node to be
localized. Note thats corresponds to a point in an-
dimensional signal space [4]. Under normal conditions,
the RSS vectors obtained from the physical positions in a
floor form a surfaceS in the n-dimensional signal space;
we can think of this surface as comprising ‘valid’ points in
signal space. Due to measurement noise, multipath effects,
and unknown biases,s will fluctuate around this idealized
RSS surface.

A localization attacker would perturb the corrects to
produce a corrupted n-dimensional RSS vectors′. In signal
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Fig. 6. Minimum distance in signal spaceDs: attack detection across different networks and buildings.

space,s′ will be moved away from the ideal surface
constructed by the correct RSS vectors. The stronger the
attack, the more likely the vectors′ will be distant from the
RSS surface. We thus choose the minimum distance to the
surfaceS, i.e.Ds = min{‖s′−sj‖ : wheresj ∈ S}, as the
test statistic for signal strength based attack detection.The
key advantage of this approach is that the attack detection
is independent of the localization algorithms and can be
performed before the localization process.

Although it is possible to devise a statistical model for
Ds based on models for normal measurement errors, in
this section we shall take a different approach and apply
empirical methodologies from training data to determine
thresholds for defining the critical region.

B. Finding Thresholds

Choosing an appropriate thresholdτ will allow the
detection scheme to be robust to false detections. In order
to obtain the thresholds, we don’t need to know the
exact RSS surface in the signal space (in practice, it is
hard to determine and exhibits discontinuities due to wall
boundaries). Instead, we can obtain the thresholds through
empirical training. During the offline phase, we can collect
the RSS vectors for a set of known positions over the floor
and construct a radio map. During the localization phase,
we get an observed vectorsobs, and we can then determine
whether thesobs is being attacked by calculating theDs

using the pre-constructed radio map.
We define that if

Ds > τ, (13)

the signal strength readings are under attack. We use the
distribution of the training data to help decide on the
thresholds. Figure 5 (a) shows the CDF of theDs in signal
space. We found that the curve ofDs shifted to the right
under signal strength attacks, especially for larger attacks,
thereby suggesting that we can useDs as a test statistic
for detecting attacks, and also that we can use the non-
attacked CDF to obtainτ for a givenα value.

C. Experimental Evaluation

We next present the evaluation of the effectiveness of
using minimum distanceDs for attack detection. Figure 6
presents the Detection Rate under different threshold (TH)
levels as a function of signal strength attacks for both
the 802.11 and the 802.15.4 networks in CoRE and the
802.11 network in the Industrial Lab. Figure 5 (b) is the

corresponding ROC curves under signal attenuation attacks
for the 802.11 network in CoRE. We found that, in general,
the effectiveness of the attack detection scheme is similar
across the different networks and buildings. Interestingly,
we found that the performance of the attack detection
scheme under signal amplification attacks is uniformly
better than those for signal attenuation attacks, although
the shapes of the DR curves are similar. Because of the
higher detection rates under amplification attacks, we do
not present additional amplification results in the remain-
der of the paper. All these results are highly encouraging
because they show our methods are quite general and do
not depend on a specific network or environment.

Further, we observed that the DR under the 802.15.4
network in CoRE outperformed the DR under the 802.11
networks in both CoRE and Industrial Lab for the signal
attenuation attacks as well as the signal amplification
attacks. For attack strengths of 15dB or larger, the DR in
the 802.15.4 network is over 95% and equals 100% when
attack severity reaches 20dB and larger. We believe that
the better landmark placement for localization [24] of the
802.15.4 network can account for its higher detection rates,
although further investigation of this effect is required.

VII. OTHER TEST STATISTICS

In this section, we examine algorithm-specific test sta-
tistics, which use properties specific to a particular local-
ization algorithm. We have chosen a representative set of
diverse algorithms. For the multilateration category, we
investigate the NLS algorithm, while for signal strength
based algorithms, we study both Area Based Probability
(ABP) and Bayesian Networks (BN) algorithms. Detailed
descriptions of these can be found in [3], [24], [27].

A. Nonlinear Least Squares (NLS)

As presented in Section V, NLS is a multilateration
algorithm that tries to satisfy the condition shown in
Equation (2). The estimated(x̂, ŷ) is the solution that
minimizes the Sum of Squared ErrorsE2:

E2 =

n
∑

i=1

[
√

(xi − x̂)2 + (yi − ŷ)2 − di]
2. (14)

We define a test statisticE =
√
E2 becauseE will likely

increase under the attack. The CDF ofE presented in
Figure 7 (a) confirms that theE grows rapidly with the
attack severity. Figure 7 (b) and Figure 8 show that the
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Fig. 7. CoRE 802.11, NLS: (a) Cumulative Distribution Function (CDF)
of E . (b) E : Receiver Operating Characteristic (ROC) curves
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Fig. 8. CoRE 802.11, NLS usingE : effectiveness of attack detection

performance of attack detection when usingE for the
802.11 network in CoRE is comparable to that using
residuals in Section V. The thresholds are also obtained
from training.

B. Area Based Probability (ABP)

Turning to signal strength based algorithms, ABP is an
area-based algorithm that uses Bayes’ Rule to return an
area which has the highest likelihood of capturing the true
location. ABP divides the floor into a set of tiles. The
total likelihood that the wireless node resides at each tile
is calculated using:

P =

n
∏

i=1

Pi (15)

where n is the total number of landmarks andPi is
the likelihood of observing the measured RSS reading
at landmarki which is usually modeled as a Gaussian
random variable. The total likelihood is calculated at each
tile, and the returned location estimation is either a region
whose likelihood is above a certain level, or is the tile with
the maximum likelihood.

When under attack, the corrupted RSS readings reduce
the set of likely positions on the floor to localize a
node. We found that the highest tile-likelihood denoted
as likelihoodmax decreases significantly under attack, as
well as the sum of the likelihoods over all the tiles,
likelihoodsum. We explored bothlikelihoodsum and
likelihoodmax as test statistics. The thresholds are learned
from the training data by taking the negative log of
the values of the highest likelihood and the sum of the
likelihoods.

The effectiveness of using likelihoodsum and
likelihoodmax for attack detection in ABP are presented in
Figure 9 and Figure 10. We found that usinglikelihoodsum

under threshold equal to 2 had better performance than
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Fig. 9. CoRE 802.11, ABP: effectiveness of attack detection
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curves

others in detecting larger attacks, but on the other hand
resulted in slightly higher false positive rates around 7%.

C. Bayesian Networks (BN)

Another representative approach in signal strength
based algorithms is the Bayesian Networks (BN) scheme.
Bayesian Networks uses Bayesian statistical inference to
predict the probability distribution of the unknown posi-
tions. BN uses a Monte-Carlo sampling technique (Gibbs
sampling) to compute the full joint-probability distribution
for not just the position coordinates, but also for every
random variable in the Bayesian Network. Without an
attack, the contribution from each landmark to the full
joint-probability distribution is almost uniform. Under an
attack, we found that the contribution from each landmark
can become significantly reduced as the attack severity
increases. Thus, we can use the fraction of contribution to
the joint probability as a test statistic in BN.

Another method we explored is to use the probability
likelihood because the conditional probability distribution
of the coordinates in BN relies on the prior and the
likelihood. We observed that under an attack, the value
of the likelihood became significantly smaller. During the
sampling process, the calculation of the likelihood uses the
same approach as in Equation (15). Because the absolute
value of the likelihood is very small, we take the negative
log of the likelihood and use it as a test statistic for attack
detection in BN.

Figure 11 shows the effectiveness of using the fraction
of contribution and the likelihood for attack detection in
BN. The detection rates are over 90% for attack strength
of 20dB or larger. The false positive rates are about 10%.
Comparing the absolute performance of these two methods
with the other schemes we proposed in this paper, the
performance of these two methods is qualitatively worse.
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Fig. 11. CoRE 802.11, BN: (a) Using fraction of contributionof each
landmark for attack detection with threshold = 0.15. (b) Using likelihood
in Bayesian inference for attack detection with threshold =0.25.
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VIII. D ISCUSSION

Comparing all of our detection schemes, Figure 12
shows the DR as a function of the signal attenuation
attacks for the 802.11 network in the CoRE building.
Surprisingly, we found that the performance of all the
schemes provided qualitatively similar detection rates,
although utilizing the residuals in LLS and the sum of
likelihoods in ABP slightly outperformed the others, while
using the fraction of contribution and the likelihood in BN
underperformed the others.

Based on these similar performance characteristics, it is
advantageous to use the minimum distance in the signal
spaceDs for signal strength based algorithms. Since the
attack detection can be performed prior to the localization
process and thus results in localization computation cost
savings under attack. Additionally, the attack detection
performance under the 802.15.4 network when usingDs

outperforms the 802.11 network with 100% detection rate
for large attacks as shown in Figure 6.

Moving to examine the relationship between attack
detection and localization error, Figure 13 shows the DR
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Fig. 13. CoRE 802.11: Relationships among Detection Rate (DR),
ranging error, and localization error.

when using residuals in LLS for attack detection, and the
localization errors under the corresponding signal attacks
with different localization algorithms. The figure shows
that detection rates are more than 90% for attack strength
equal to or greater than 15dB, and at this attack strength
the average localization error is about 35ft.

The above result is quite encouraging, as it shows that
an attacker cannot cause gross localization errors without
there being a very high probability of detection (>95%).
In the case of RSS, with mean errors of 10-15 ft [3], an
attacker can not cause errors of about 2-3 times over the
average error without a very high probability of detection.
Even for detection rates as low as 50%, the attacker’s
position error is limited to about 20 ft.

IX. CONCLUSION

In this work, we analyzed the problem of detecting
non-cryptographic attacks on wireless localization. We
proposed a theoretical foundation by formulating attack
detection as a statistical significance testing problem. We
then concentrated on test statistics for two broad local-
ization approaches: multilateration and signal strength.
For multilateration that uses Linear Least Squares, we
derived a closed-form representation for the attack detec-
tor. Further, for localization schemes that employ signal
strength, we showed that by utilizing the signal strength
as a common feature, the minimum Euclidean distance
in the signal space can be used as a test statistic for
attack detection independent of the localization process.
Further, we derived additional test statistics for a selection
of representative localization algorithms.

We studied the effectiveness and generality of our attack
detection schemes using a trace-driven evaluation involv-
ing both an 802.11 (WiFi) network and an 802.15.4 (Zig-
Bee) network in two real office buildings. We evaluated the
performance of our attack detection schemes in terms of
detection rates and receiver operating characteristic curves.
Our experimental results provide strong evidence of the
effectiveness of our attack detection schemes with high
detection rates, over 95% and low false positive rates, often
below 5%. Also, our approach is generic across a diverse
set of algorithms, networks, and buildings. Interestingly,
we found that the performance of the different attack
detection schemes are more similar than different. This re-
sult shows that different localization systems have similar
attack detection capabilities, and consequently that system
designers can focus on using algorithms that provide the
highest localization accuracy rather than having to tradeoff
position accuracy against attack detection abilities.

APPENDIX

COMPUTING THE PROBABILITY MASSM

We have simplified the probability massM of a multi-
variate Gaussian distribution as

M =
1

(
√

2π)
n

∫

...

∫

E′

e−
1

2
yTydy1...dyn

=
1

(
√

2π)
n

∫

...

∫

E′

e−
1

2

P
n

i=1
y2

i dy1...dyn (16)
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with E′ defined by yTy ≤ X2. Changing to polar
coordinates, we get

M =
1

(
√

2π)n

∫ X

0

∫ 2π

0

∫ π

0

...

∫ π

0

[e−
r
2

2 rn−1drdφ1

sinφ2dφ2...sin
n−2φn−1dφn−1]

=
1

(
√

2π)n

∫ X

0

e−
r
2

2 rn−1dr ×
∫ 2π

0

dφ1

×
n−1
∏

i=2

∫ π

0

sini−1φidφi

=
2

(
√

π)n−2
× Ar,n ×

n−1
∏

i=2

Bi (17)

with

Ar,n =
1

(
√

2)n

∫ X

0

e−
r
2

2 rn−1dr

and

Bi =

∫ π

0

sini−1φidφi.

Using v = r2/2, we have

Ar,n =
1

2

∫ X
2

2

0

e−vv
n−2

2 dv =
1

2
× Γ(

n

2
,
X2

2
) (18)

whereΓ is the incomplete gamma function. Since

Bi = β(
i

2
,
1

2
) =

Γ( i
2 )

Γ( i+1
2 )

×
√

π. (19)

Through further simplification, we can get

n−1
∏

i=2

Bi = (
√

π)n−2 × 1

Γ(n
2 )

. (20)

Hence, substituting Equations (18) and (20) into (17), we
obtain the probability mass

M =
Γ(n/2,X2/2)

Γ(n/2)
.
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